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Numerically Determining the Dispersion Relations
of Nonlinear TE Slab-Guided Waves
In Non-Kerr-Like Media
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Abstract—Dispersion relations are calculated numerically for roots present in [7]. Rozzet al. [1] used the phase-plane
nonlir!ear slab guides With_ a nonlinear core and linear claddings method to Study the wave propaga‘[ion in nonquadratic power-
by using the transfer matrix method (TMM). The core can have |5,y gependence film. This method is rigorous and can provide
any nonlinearities while high computation efficiency can still be : . . .
achieved. As a result, a simple numerical calculation tool without a phys,'call interpretation of the re$U|ts .by meansrpégrals
spurious roots is presented for general nonlinear slab-guided Of motionin the phase plane. Again, this method is based on
structures. the integral of the nonlinear Helmholtz equation.

Index Terms—DBispersion, non-Kerr-like nonlinearity, transfer In[8], a tran_sfer n_1atnx meth‘?d (TMM) has _been d_eveloped
matrix method. to study the first kind of nonlinear waveguides with Kerr-

like nonlinearity. The structure studied by Ramadssal.
[8] is a linear core clad by another linear medium and
| INTRODUCTION supported by semi-infinite Kerr-like nonlinear medium, which
ONSIDERABLE interest is currently being directed tacan be studied analytically [11]. By using the TMM, the
nonlinear propagation in nonlinear slab waveguides femlues of the field from one boundary are transmitted to
integrated optics applications because of the new propagataother by involving multiplication of % 2 transfer matrixes
properties [1]-[17] and their potential use in nonlinear opticanly. In [17], Ma has used this method to discuss nonlinear
devices such as optical switches and nonlinear directiomabpagations in a Kerr-like nonlinear core surrounded by linear
couplers [8]. media.

Nonlinear slab waveguides can be distinguished by theln this paper, the TMM is modified and extended to solve a
location of the nonlinear layer(s). Typically, waveguides camore general nonlinear case: the nonlinear propagation in non-
be etched in two ways: a linear core cladded by one or tdioear slab guides with linear claddings and the nonlinear core
nonlinear media [10]-[12], or, the other way around, with with a refractive index of nonquadratic power-law dependence.
nonlinear core surrounded by two linear claddings [1], [3]-[9]1)nlike the method used in [8], global coordinates, instead of
[13]-[17]. local coordinates, are used in this paper’s approach to circum-

Most of the theoretical investigations of these two kinds afent difficulties when the local coordinates are employed to
nonlinear waveguides have been limited to Kerr-like nonlinreat a thin subregion.
earity [3]-[9], [17]. However, “in real media, it is not possible The order of the solved matrixes employed in the TMM
to optically change the refractive index independently and still two and an iterative process is not required. In conse-
saturation effects eventually set.in. many materials exhibit a quence, large central processing unit (CPU) time is not needed
refractive index which varies with the optical field raised to and spurious solutions are not found. For simplicity, only
power other than two” [10]. For general non-Kerr-like nonlinTE-waves are studied in this paper.
earities, most of the studies have been focused on waveguides
made of a thin linear film interfaced on either one side or both I
sides with nonlinear materials [10]-[12]. For the case of a non-

Kerr-like nonlinear core with linear claddings, Langbetral. ~ The schematic drawing of a three-layered slab guide with a
[13] and AL-Baderet al.[14] have used a method based on thaon-Kerr-like nonlinear guiding film bounded by linear media
first integral of the nonlinear Helmholtz equation to deal witff Shown in Fig. 1. The film is assumed to have a relative
the effects of both nonquadratic power-law dependence afglectric constant; made of a linear pat.; and an intensity-
saturation of the refractive index on nonlinear guided wavegduced nonlinear parf(|£]?):

The solution of the eigenvalue equation can only be obtained -

after removing a characteristic singularity in the method [14] €2 = era + [(IE]). 1)
and must be used cautiously to avoid the confusing spurioH

. NUMERICAL METHOD

S . . .
ere, f represents any nonlinear function. The claddings are
assumed to be linear with relative dielectric constantin the
Manuscript received September 18, 1996; revised January 20, 1997. substrate(a: < 0) ande,s in the cladding(a: > d).
The authors are with the Department of Electrical Engineering, Technical R .. If ! TE d ideri v th
University of Nova Scotia, Halifax, N.S., Canada B3J 2X4. estricting oneself to waves and considering only the
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Fig. 1. A slab guide with a nonlinear core, a linear cladding, and a substragy. 2. Dividing the nonlinear Region Il inte subregions.

E ={0,E,,0} andH = {H,,0,H.}. The electric field&,,

By applying the boundary condition between every two
propagating along the-axis, corresponds to free space, ar;g y applying . y " very

eighboring subregions, the unknown constandts B; for

must then satisfy the following Helmholtz wave equation [1 ifferent subregions can be connected. From the Maxwell's

in Region I: equations, it can be found that.;(x) « %ﬂ By using the
dQEy field continuity conditions at interfaces= x;_; andx = x;,

+E (e = N>+ f(|E,|D)E, =0, 0>z>d (2

drz2 A;, B;, and field values of the neighboring subregions are
and in Regions | and IlI: connected as follows:
2 Al _ -1 Aiy
X
2 . Ez T _ Ei_ Ty—
o N NN BN £ B A V200 VA o s | €
L T dx
Here, E, is assumed to be in the form ef 7k NV==«t) where with
N is the mode index and, corresponds to the free-space sin(k;xi—1) cos(kiz;_1)
wavenumber. i(@i-1) = {kl cos(kizi_y) —ki sin(kia:i_l)}’
Let £, be the magnitude of the electric field at= 0, i=1,2,--,n. (11)

E, = E,(0), and take the normalization form &, (z) to £,

E(z) = E,(z)/E,. It can then be found that the solutions irRepeated applications of (9) and (10) throughout all the

the linear regions are [1], [3]-[17] as follows: subregions lead to the connections of the coefficients in the
e £ <0, k? — R2(N? = e) first region A; and B; to the coefficients4,, and B,, in the

=\ ok - I iom. That i
E(z) {Eoe—kz(ac—d)7 2> d, R IS(N? — e ast subregiom. That is,

(5) E,(z,) " 1 | [Eale)
To obtain the solutions, Region Il (the nonlinear region) is{dEngwnz} = < [ [[Mi) [ M (i)~ |:dE2§l‘12:|
divided inton subregions (as shown in Fig. 2) afid= z, < d“” =2 e

-771<-T2<"'<-Ti—l<$i<$i+l<"'<$n—1<$n:d- . . o s -1 A
In each subregior: € [z;—1,2;] (¢ = 1,2,---,n), one can = {[IQ[Mz(xz)][Mz(xz—l)] }[Ml(ail)] |:Bl:|'
assume that the variation & is small. As a result, the field = (12)

value atr = z;_1, E(z;—1) can be used to replacg(r) in
the termf (| E(x)|?) within the whole subregion € [z;_1,z;]. Using the boundary conditions at= =, = 0 andz = z, = d,
Equation (2) is then linearized and becomes a linear equatiame finds
in each subregion: € [z;_1,z;]. Its solution is similar to

that in a linear dielectric slab guide. L&t (z) = E(z), = € Eo= gg(x(") )
[-Ti—l,xi] (L =12 7”)' Then _ECEO = 2 n (13)
X
E;(z) = A;sin(k;z) + B; cos(k;x) (6) A = ke
and Yk
) By =1. 14
d%(a:) = ki(A; cos(kix) — By sin(k;z)) @) ' (14)
) o By substituting (13) and (14) into (12), the following disper-
with sion equation is obtained:
ki =ki(er2 = N* + [(|Ei(mim) ), (i=1,2,---,n) _ 1 - | T
® B | = s F]. a9
and 4;, B; being the constants to be determined. i=2
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Fig. 3. The cutoff wavenumber of TEversusE, for Kerr-like nonlinearity Fig. 5. The cutoff wavenumber of TiEversusE, for focusing non-Kerr-like
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Fig. 4. The cutoff wavenumber of TEversusE, for Kerr-like nonlinearity
(a = £1.625107'° (VIm)2, €1 = €3 = 3.42, €2 = 3.5). Fig. 6. The cutoff wavenumber of TE versus E, for de-focusing
non-Kerr-like nonlinearity. Parameters are the same as those in Fig. 4 and
a = —1.6251071° (V/im)®.

Thus, the boundary values at= x, = 0 are transmitted to
the boundary values at = d (the other side of the nonlinear
region). nonlinearity

The dispersion equation (15) is general and it can be useclf_I .

. . . . or the first mode, Tk its cutoff wavenumber is zero
for any nonlinearity. The accuracy can be simply improved b -
. . . nd is independent of,,. However, for the other modes, the
increasing the numbet of the subregions.

It is worth mentioning that in [16], the authors have alsgutofflwavenumbelkc 1S dgpendent .OrE" (this is different
used the idea of a transmitting matrix to study the nonline pm linear cases wherk. is always independent df,). As
guided waves in multilayer systems. In each nonlinear layefamples, nonlinear TFand TE; modes are computed, and
with Kerr-like nonlinearity, they used the method of the firsi1€ *c dependence o, is shown in Figs. 3 and 4 for both
integral of the wave equation, and the solution in the lay&cusing and de-focusing Kerr-like nonlinearities. For non-
is the Jacobian elliptic function, which is limited to only thd<€rr-like nonlinearities, thé. dependence is shown in Figs. 5
Kerr-like cases. Here, the nonlinear equation is linearized 3#d & Witha = £1.625x 10749 (V/m)®. It can be seen that for
first, and then the well-solved solutions are used for a linefgcusing nonlinearities, the cutoff wavenumber! is smaller

film as the trial solution for the linearized subregions to obtatan that of linear cases. However, for a de-focusing nonlinear
the final nonlinear solutions. The technique is good for arfpre, thek.d is larger than that of linear cases.

non"nearity besides Kerr-non”nearity_ In FlgS 7 and 8, the diSperSion curves for varigusire
shown. It can be seen from the figures that the dispersion
curves for a focusing nonlinear core are always above the

linear dispersion curves, while for a de-focusing slab guide
A symmetrical nonlinear dielectric slab guide is computeghey are below the curves.

~ > 0is for focusing nonlinearity ang < 0 is for de-focusing

I1l. RESULTS

here with the parameters., = ¢35 = 3.42, 2 = 3.5, From the above results, it is also found that the mode
d =1 pm, and index N is dependent on the nonlinear coefficientand the
s magnitude of the field att = 0, E,. In other words,N

= y|E|°. (16) depends ony = «E?. This dependence is illustrated in Fig. 9
atk,d = 4.0 for TE; modes. To ensure propagating mod#s,

[e]

E
FUEF) = ol = 22
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must satisfy, /e,1 < N < /€2 for linear cases. For nonlinear
cases,N can be larger than/c,» as shown in Fig. 9 with

€r1 = €p3 = 3.42, €2 = 3.5.
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Fig. 10. The relative convergence errors of the cutoff wavenurhbérfor
TE; mode. The parameters are the same as those used in the above figures.
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Fig. 11. The relative convergence errors of the cutoff wavenurkbérfor
TEz; mode. The parameters are the same as those used in the above figures.

IV. CONCLUSION

In this paper, the TMM is extended to find the dispersion
relations of a general nonlinear dielectric slab guide. A number
of examples are calculated for the design of optical devices
based on nonlinear waveguide structures. The numerical re-
sults show that the method has no spurious solutions and
yields accurate results when the number of the subregions is
sufficient. This makes the method an efficient tool for design
purposes.
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