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Numerically Determining the Dispersion Relations
of Nonlinear TE Slab-Guided Waves

in Non-Kerr-Like Media
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Abstract—Dispersion relations are calculated numerically for
nonlinear slab guides with a nonlinear core and linear claddings
by using the transfer matrix method (TMM). The core can have
any nonlinearities while high computation efficiency can still be
achieved. As a result, a simple numerical calculation tool without
spurious roots is presented for general nonlinear slab-guided
structures.

Index Terms—Dispersion, non-Kerr-like nonlinearity, transfer
matrix method.

I. INTRODUCTION

CONSIDERABLE interest is currently being directed to
nonlinear propagation in nonlinear slab waveguides for

integrated optics applications because of the new propagation
properties [1]–[17] and their potential use in nonlinear optical
devices such as optical switches and nonlinear directional
couplers [8].

Nonlinear slab waveguides can be distinguished by the
location of the nonlinear layer(s). Typically, waveguides can
be etched in two ways: a linear core cladded by one or two
nonlinear media [10]–[12], or, the other way around, with a
nonlinear core surrounded by two linear claddings [1], [3]–[9],
[13]–[17].

Most of the theoretical investigations of these two kinds of
nonlinear waveguides have been limited to Kerr-like nonlin-
earity [3]–[9], [17]. However, “in real media, it is not possible
to optically change the refractive index independently and
saturation effects eventually set in many materials exhibit a
refractive index which varies with the optical field raised to a
power other than two” [10]. For general non-Kerr-like nonlin-
earities, most of the studies have been focused on waveguides
made of a thin linear film interfaced on either one side or both
sides with nonlinear materials [10]–[12]. For the case of a non-
Kerr-like nonlinear core with linear claddings, Langbeinet al.
[13] and AL-Baderet al. [14] have used a method based on the
first integral of the nonlinear Helmholtz equation to deal with
the effects of both nonquadratic power-law dependence and
saturation of the refractive index on nonlinear guided waves.
The solution of the eigenvalue equation can only be obtained
after removing a characteristic singularity in the method [14]
and must be used cautiously to avoid the confusing spurious
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roots present in [7]. Rozziet al. [1] used the phase-plane
method to study the wave propagation in nonquadratic power-
law dependence film. This method is rigorous and can provide
a physical interpretation of the results by means ofintegrals
of motion in the phase plane. Again, this method is based on
the integral of the nonlinear Helmholtz equation.

In [8], a transfer matrix method (TMM) has been developed
to study the first kind of nonlinear waveguides with Kerr-
like nonlinearity. The structure studied by Ramadaset al.
[8] is a linear core clad by another linear medium and
supported by semi-infinite Kerr-like nonlinear medium, which
can be studied analytically [11]. By using the TMM, the
values of the field from one boundary are transmitted to
another by involving multiplication of 2 2 transfer matrixes
only. In [17], Ma has used this method to discuss nonlinear
propagations in a Kerr-like nonlinear core surrounded by linear
media.

In this paper, the TMM is modified and extended to solve a
more general nonlinear case: the nonlinear propagation in non-
linear slab guides with linear claddings and the nonlinear core
with a refractive index of nonquadratic power-law dependence.
Unlike the method used in [8], global coordinates, instead of
local coordinates, are used in this paper’s approach to circum-
vent difficulties when the local coordinates are employed to
treat a thin subregion.

The order of the solved matrixes employed in the TMM
is still two and an iterative process is not required. In conse-
quence, large central processing unit (CPU) time is not needed
and spurious solutions are not found. For simplicity, only
TE-waves are studied in this paper.

II. NUMERICAL METHOD

The schematic drawing of a three-layered slab guide with a
non-Kerr-like nonlinear guiding film bounded by linear media
is shown in Fig. 1. The film is assumed to have a relative
dielectric constant made of a linear part and an intensity-
induced nonlinear part :

(1)

Here, represents any nonlinear function. The claddings are
assumed to be linear with relative dielectric constantin the
substrate and in the cladding .

Restricting oneself to TE waves and considering only the
-component of the electric field being nonzero, one sees that
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Fig. 1. A slab guide with a nonlinear core, a linear cladding, and a substrate.

and . The electric field ,
propagating along the-axis, corresponds to free space, and
must then satisfy the following Helmholtz wave equation [14]
in Region II:

(2)

and in Regions I and III:

(3)

(4)

Here, is assumed to be in the form of where
is the mode index and corresponds to the free-space

wavenumber.
Let be the magnitude of the electric field at ,

, and take the normalization form of to ,
. It can then be found that the solutions in

the linear regions are [1], [3]–[17] as follows:

(5)
To obtain the solutions, Region II (the nonlinear region) is
divided into subregions (as shown in Fig. 2) and

.
In each subregion , one can
assume that the variation of is small. As a result, the field
value at , can be used to replace in
the term within the whole subregion .
Equation (2) is then linearized and becomes a linear equation
in each subregion . Its solution is similar to
that in a linear dielectric slab guide. Let

. Then

(6)

and

(7)

with

(8)
and , being the constants to be determined.

Fig. 2. Dividing the nonlinear Region II inton subregions.

By applying the boundary condition between every two
neighboring subregions, the unknown constants, for
different subregions can be connected. From the Maxwell’s
equations, it can be found that . By using the
field continuity conditions at interfaces and ,

, , and field values of the neighboring subregions are
connected as follows:

(9)

(10)

with

(11)

Repeated applications of (9) and (10) throughout all the
subregions lead to the connections of the coefficients in the
first region and to the coefficients and in the
last subregion . That is,

(12)

Using the boundary conditions at and ,
one finds

(13)

(14)

By substituting (13) and (14) into (12), the following disper-
sion equation is obtained:

(15)
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Fig. 3. The cutoff wavenumber of TE1 versusEo for Kerr-like nonlinearity
(� = �1:62510�10 (V/m)2, �r1 = �r3 = 3:42; �r2 = 3:5).

Fig. 4. The cutoff wavenumber of TE2 versusEo for Kerr-like nonlinearity
(� = �1:62510�10 (V/m)2, �r1 = �r3 = 3:42; �r2 = 3:5).

Thus, the boundary values at are transmitted to
the boundary values at (the other side of the nonlinear
region).

The dispersion equation (15) is general and it can be used
for any nonlinearity. The accuracy can be simply improved by
increasing the number of the subregions.

It is worth mentioning that in [16], the authors have also
used the idea of a transmitting matrix to study the nonlinear
guided waves in multilayer systems. In each nonlinear layer
with Kerr-like nonlinearity, they used the method of the first
integral of the wave equation, and the solution in the layer
is the Jacobian elliptic function, which is limited to only the
Kerr-like cases. Here, the nonlinear equation is linearized at
first, and then the well-solved solutions are used for a linear
film as the trial solution for the linearized subregions to obtain
the final nonlinear solutions. The technique is good for any
nonlinearity besides Kerr-nonlinearity.

III. RESULTS

A symmetrical nonlinear dielectric slab guide is computed
here with the parameters , ,

m, and

(16)

Fig. 5. The cutoff wavenumber of TE1 versusEo for focusing non-Kerr-like
nonlinearity. Parameters are the same as those in Fig. 4 and� = 1:62510�10

(V/m)� .

Fig. 6. The cutoff wavenumber of TE1 versus Eo for de-focusing
non-Kerr-like nonlinearity. Parameters are the same as those in Fig. 4 and
� = �1:62510�10 (V/m)� .

is for focusing nonlinearity and is for de-focusing
nonlinearity.

For the first mode, TE, its cutoff wavenumber is zero
and is independent of . However, for the other modes, the
cutoff wavenumber is dependent on (this is different
from linear cases where is always independent of ). As
examples, nonlinear TEand TE modes are computed, and
the dependence on is shown in Figs. 3 and 4 for both
focusing and de-focusing Kerr-like nonlinearities. For non-
Kerr-like nonlinearities, the dependence is shown in Figs. 5
and 6 with (V/m) . It can be seen that for
focusing nonlinearities, the cutoff wavenumber is smaller
than that of linear cases. However, for a de-focusing nonlinear
core, the is larger than that of linear cases.

In Figs. 7 and 8, the dispersion curves for variousare
shown. It can be seen from the figures that the dispersion
curves for a focusing nonlinear core are always above the
linear dispersion curves, while for a de-focusing slab guide
they are below the curves.

From the above results, it is also found that the mode
index is dependent on the nonlinear coefficientand the
magnitude of the field at , . In other words,
depends on . This dependence is illustrated in Fig. 9
at for TE modes. To ensure propagating modes,
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Fig. 7. The dispersion curves of TE0 mode for various�.

Fig. 8. The dispersion curves of TE1 mode for various�.

Fig. 9. 
 versusN for various� at kod = 4 of TE0 modes.

must satisfy for linear cases. For nonlinear
cases, can be larger than as shown in Fig. 9 with

.
To study the impact of (number of the linearized subre-

gions) on the accuracy of the solutions, the relative conver-
gence error is calculated. The relative convergence error at
is defined as

- -

-
(17)

In Figs. 10 and 11, the relative convergence errors of the cutoff
wavenumber for TE and TE are shown. The toward-zero
tendency of the convergence error gives us the confidence on
the validity of the technique used here.

Fig. 10. The relative convergence errors of the cutoff wavenumberkcd for
TE1 mode. The parameters are the same as those used in the above figures.

Fig. 11. The relative convergence errors of the cutoff wavenumberkcd for
TE2 mode. The parameters are the same as those used in the above figures.

IV. CONCLUSION

In this paper, the TMM is extended to find the dispersion
relations of a general nonlinear dielectric slab guide. A number
of examples are calculated for the design of optical devices
based on nonlinear waveguide structures. The numerical re-
sults show that the method has no spurious solutions and
yields accurate results when the number of the subregions is
sufficient. This makes the method an efficient tool for design
purposes.
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